السبت , سبتمبر 21 2024

A hybrid deep learning model for breast cancer Mammographic Image Classification based on transfer learning and an attention module

Abstract

Breast cancer is one of the primary causes of death among women. Early detection of breast cancer allows for the receipt of appropriate treatment, thus increasing the possibility of survival. In this paper, we proposed a hybrid deep learning model using a pre-trained VGG16 model with a self-attention mechanism for breast cancer detection. We extract features from the binary class (benign, malignant) dataset of the mammographic image analysis society (MIAS) using pre-trained deep convolutional neural network (CNN) architectures like Xception, MobileNet, DenseNet, and VGG-16. So the results illustrated that the best model is VGG16 with a self-attention module, which achieved an accuracy of  98.77%.

Keywords: Breast cancer, VGG16, MIAS,  Mammography, Classification.

BY :

Tawfik Ezat Mousa¹, Mohamed S. Geoda²

¹² Departement of Computer Technologies,

Higher Institute Of Science and Technology, Tobruk, Libya.

تقييم المستخدمون: كن أول المصوتون !

عن admin

شاهد أيضاً

تحليل دورة حياة المركبات الكهربائية تقييم الآثار البيئية والاقتصادية

Abstract This research paper presents a comprehensive lifecycle analysis of electric vehicles (EVs) to assess …

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *